擠壓 機(jī)的一些重要特點(diǎn)1.平衡原則
擠壓機(jī)的擠出的基本機(jī)理很簡(jiǎn)單-一個(gè)螺桿在筒體中轉(zhuǎn)動(dòng)并把塑料向前推動(dòng)。螺桿實(shí)際上是一個(gè)斜面或者斜坡,纏繞在中心層上。其目的是增加壓力以便克服較大的阻力。就一臺(tái)擠出機(jī)而言,有3種阻力需要克服:固體顆粒(進(jìn)料)對(duì)筒壁的摩擦力和螺桿轉(zhuǎn)動(dòng)前幾圈時(shí)(進(jìn)料區(qū))它們之間的相互摩擦力;熔體在筒壁上的附著力;熔體被向前推動(dòng)時(shí)其內(nèi)部的物流阻力。 牛頓曾解釋說,如果一個(gè)物體沒有向一個(gè)給定的方向運(yùn)動(dòng),那么這個(gè)物體上的力就在這個(gè)方向中平衡。螺桿不是以軸向運(yùn)動(dòng)的,雖然在圓周附近它可能橫向快速轉(zhuǎn)動(dòng)。因此,螺桿上的軸向力被平衡了,而且如果它給塑料熔體施加了一個(gè)很大的向前推力那么它也同時(shí)給某物體施加了一個(gè)相同向后推力。在這里,它施加的推力是作用在進(jìn)料口后面的軸承-止推軸承上。 多數(shù)單螺桿是右旋螺紋,像木工和機(jī)器中使用的螺桿和螺栓。如果從后面看,它們是反向轉(zhuǎn)動(dòng),因?yàn)樗鼈円M力向后旋出筒體。在一些雙螺桿擠出機(jī)中,兩個(gè)螺桿在兩個(gè)筒體中反向轉(zhuǎn)動(dòng)并相互交叉,因此一個(gè)必須是右向的,另一個(gè)必須是左向的。在其它咬合雙螺桿中,兩個(gè)螺桿以相同的方向轉(zhuǎn)動(dòng)因而必須有相同的取向。然而,不管是哪種情況都有吸收向后力的止推軸承,牛頓的原理依然適用。
2.熱原則
可擠出的塑料是熱塑料-它們?cè)诩訜釙r(shí)熔化并在冷卻時(shí)再次凝固。熔化塑料的熱量從何而來?進(jìn)料預(yù)熱和筒體/模具加熱器可能起作用而且在啟動(dòng)時(shí)非常重要,但是,電機(jī)輸入能量--電機(jī)克服粘稠熔體的阻力轉(zhuǎn)動(dòng)螺桿時(shí)生成于筒體內(nèi)的摩擦熱量--是所有塑料最重要的熱源,小系統(tǒng)、低速螺桿、高熔體溫度塑料和擠出涂層應(yīng)用除外。 對(duì)于所有其他操作,認(rèn)識(shí)到筒體加熱器不是操作中的主要熱源是很重要的,因而對(duì)擠出的作用比我們預(yù)計(jì)的可能要小(見第11條原則)。后筒體溫度可能依然重要,因?yàn)樗绊扆X合或者進(jìn)料中的固體物輸送速度。模頭和模具溫度通常應(yīng)該是想要的熔體溫度或者接近于這一溫度,除非它們用于某具體目的像上光、流體分配或者壓力控制。
3.減速原則
在多數(shù)擠出機(jī)中,螺桿速度的變化通過調(diào)整電機(jī)速度實(shí)現(xiàn)。電機(jī)通常以大約1750rpm的全速轉(zhuǎn)動(dòng),但是這對(duì)一個(gè)擠出機(jī)螺桿來說太快了。如果以如此快的速度轉(zhuǎn)動(dòng),就會(huì)產(chǎn)生太多的摩擦熱量而且塑料的滯留時(shí)間也太短而不能制備均勻的、很好攪拌的熔體。典型的減速比率在10:1到20:1之間。第一階段既可以用齒輪也可以滑輪組,但是第二階段都用齒輪而且螺桿定位在最后一個(gè)大齒輪中心。 在一些慢速運(yùn)行的機(jī)器中(比如用于UPVC的雙螺桿),可能有3個(gè)減速階段并且最大速度可能會(huì)低到30rpm或更低(比率達(dá)60:1)。另一個(gè)極端是,一些用于攪拌的很長(zhǎng)的雙螺桿可以以600rpm或更快的速度運(yùn)行,因此需要一個(gè)非常低的減速率以及很多深冷卻。 有時(shí)減速率與任務(wù)匹配有誤--會(huì)有太多的能量不能使用-而且有可能在電機(jī)和改變最大速度的第一個(gè)減速階段之間增加一個(gè)滑輪組。這要么使螺桿速度增加到超過先前極限或者降低最大速度允許該系統(tǒng)以最大速度更大的百分比運(yùn)行。這將增加可獲得能量、減少安培數(shù)并避免電機(jī)問題。在兩種情況中,根據(jù)材料和其冷卻需要,輸出可能會(huì)增加。
4.進(jìn)料擔(dān)當(dāng)冷卻劑
擠出是把電機(jī)的能量--有時(shí)是加熱器的--傳送到冷塑料上,從而把它從固體轉(zhuǎn)換成熔體。輸入進(jìn)料比給料區(qū)中的筒體和螺桿表面溫度低。然而,給料區(qū)中的筒體表面幾乎總是在塑料熔化范圍之上。它通過與進(jìn)料顆粒接觸而冷卻,但熱量由熱前端向后傳遞的熱量以及可控制加熱而保持。甚至當(dāng)前端熱量由粘性摩擦保持并且不需要筒體熱量輸入時(shí),可能需要開后加熱器。最重要的例外是槽型進(jìn)料筒,幾乎專用于HDPE。 螺桿根表面也被進(jìn)料冷卻并被塑料進(jìn)料顆粒(及顆粒之間的空氣)從筒壁上絕熱。如果螺桿突然停止,進(jìn)料也停止,并且因?yàn)闊崃繌母鼰岬那岸讼蚝笠苿?dòng),螺桿表面在進(jìn)料區(qū)變得更熱。這可能引起顆粒在根部的粘附或搭橋。
5.在進(jìn)料區(qū)內(nèi),粘到筒體上滑到螺桿上
為了使一臺(tái)單螺桿擠出機(jī)光滑筒體進(jìn)料區(qū)的固體顆粒輸送量到達(dá)最大,顆粒應(yīng)該粘在筒體上并滑到螺桿上。如果顆粒粘在螺桿根部,沒有什么東西能把它們拉下來;通道體積和固體的入口量就減少了。在根部粘附不好的另一個(gè)原因是塑料可能會(huì)在此處熱煉并產(chǎn)生凝膠和類似污染顆粒,或者隨輸出速度的變化間歇粘附并中斷。 多數(shù)塑料很自然地在根部滑動(dòng),因?yàn)樗鼈冞M(jìn)入時(shí)是冷的,而且摩擦力還沒有把根部加熱到和筒壁一樣熱。一些材料比另一些材料更可能粘附:高度塑化PVC,非晶體PET,和 某些最終使用中想要的有粘附特性的聚烯烴類共聚合物。 對(duì)于筒體,塑料有必要粘附在這里以便它被刮掉并被螺桿螺紋向前推動(dòng)。顆粒和筒體之間應(yīng)該有一個(gè)高的摩擦系數(shù),而摩擦系數(shù)反過來也受后筒體溫度的強(qiáng)烈影響。如果顆粒不粘附,它們只是就地轉(zhuǎn)動(dòng)而不向前移動(dòng)--這就是為什么光滑的進(jìn)料不好的原因。 表面摩擦并非影響進(jìn)料的唯一因素。很多顆粒永遠(yuǎn)都不接觸筒體或螺桿根部,因此在顆粒物內(nèi)部必須有摩擦和機(jī)械與粘度連鎖。 帶槽筒體是一種特殊情況。槽在進(jìn)料區(qū),進(jìn)料區(qū)與筒體其余部分是熱絕緣的并是深度水冷的。螺紋把顆粒推入槽內(nèi)并在一個(gè)相當(dāng)短的距離內(nèi)形成一個(gè)很高的壓力。這增加了相同輸出較低螺桿轉(zhuǎn)速的咬合允量,從而前端產(chǎn)生的摩擦熱量減少,熔體溫度更低。這可能意味著冷卻限制吹制膜生產(chǎn)線中更快的生產(chǎn)。槽特別適合于HDPE,它是除過氟化塑料之外最滑的普通塑料。
6.材料的花費(fèi)最大
在某些情況下,材料成本可以占到產(chǎn)成本的80%--多于其他所有因素之和--除過少數(shù)質(zhì)量和包裝特別重要的產(chǎn)品比如醫(yī)用導(dǎo)管。這個(gè)原則自然引出兩個(gè)結(jié)論:加工商應(yīng)該盡可能多地重復(fù)使用邊角料和廢品來代替原材料,并盡可能嚴(yán)格地遵守容差以免背離目標(biāo)厚度及產(chǎn)品出現(xiàn)問題。
7.能源成本相對(duì)來說并不重要
盡管一個(gè)工廠的吸引力和真正問題和上升的能源成本在同一水平線上,運(yùn)行一臺(tái)擠出機(jī)所需的能源仍然是總生產(chǎn)成本中很少一部分。情況總是這樣的因?yàn)椴牧铣杀痉浅8,擠出機(jī)是一個(gè)有效的系統(tǒng),如果引入了過多能量那么塑料就會(huì)很快變得非常熱以致于無法正常加工。
8.螺桿末端的壓力很重要
這個(gè)壓力反映螺桿下游所有物體的阻力:過濾網(wǎng)和污染扎碎機(jī)板、適配器輸送管、固定攪拌器(如果有)以及模具自身。它不但依賴于這些組件的幾何圖形還依賴于系統(tǒng)中的溫度,這反過來又影響樹脂粘度和通過速度。它不依賴于螺桿設(shè)計(jì),它影響溫度、粘度和通過量時(shí)除外。就安全原因來說,測(cè)量溫度是很重要的--如果它太高,模頭和模具可能爆炸并傷害附近人員或機(jī)器。 壓力對(duì)于攪拌是有利的,特別在單螺桿系統(tǒng)的最后區(qū)域(計(jì)量區(qū))。然而,高壓力也意味著電機(jī)要輸出更多的能量--因而熔體溫度更高--這可以規(guī)定壓力極限。在雙螺桿中,兩個(gè)螺桿相互咬合是一種更加有效的攪拌器,因此用于這種目的時(shí)不需要壓力。 在制造空心部件時(shí),比如使用支架對(duì)核心定位的**模具制造的管子,必須在模具內(nèi)產(chǎn)生很高的壓力來幫助分開的物流重新組合。否則,沿焊接線的產(chǎn)品可能較弱并且在使用時(shí)可能出現(xiàn)問題。
9.輸出=最后一個(gè)螺紋的位移+/-壓力物流和泄漏
最后一個(gè)螺紋的位移叫做正流,只依賴于螺桿的幾何形狀、螺桿速度和熔體密度。它由壓力物流調(diào)節(jié),實(shí)際上包括了減少輸出量的阻力效果(由最高壓力表示)和增加輸出量的進(jìn)料中的任何過咬合效果。螺紋上的泄漏可能是兩個(gè)方向中的任意一個(gè)方向。 計(jì)算每個(gè)rpm(轉(zhuǎn))的輸出量也是有用的,因?yàn)檫@表示某時(shí)間螺桿的泵出能力的任何下降。另外一個(gè)相關(guān)的計(jì)算是所用每馬力或千瓦的輸出量。這表示效率并能夠估計(jì)一臺(tái)給定電機(jī)和驅(qū)動(dòng)器的生產(chǎn)能力。
10.剪切率在粘度中起主要作用
所有普通塑料都有剪力下降特性,意思是在塑料運(yùn)動(dòng)得越來越快時(shí)粘度變低。一些塑料的這個(gè)效果表示得特別明顯。例如一些PVCs在推力增加一倍時(shí)流速會(huì)增加10倍或更多。相反,LLDPE剪力下降得不是太多,推理增加一倍時(shí)其流速只增加3到4倍。減少了的剪力降低效果意味著擠出條件下的高粘度,這反過來又意味著需要更多的電機(jī)功率。這可以解釋為什么LLDPE運(yùn)行時(shí)溫度比LDPE高。流量以剪切率表示,在螺桿通道中時(shí)大約是100s-1,在多數(shù)模具口型中是100和100s-1之間,在螺紋與筒壁間隙和一些小模具間隙中大于100s-1。熔體系數(shù)是粘度的一個(gè)常用的測(cè)量方法但卻是顛倒的(比如是流量/推力而不是推力/流量)?上,其測(cè)量是在剪切率在10s-1或更小時(shí)而且在熔體流速很快的擠出機(jī)中可能不是一個(gè)真實(shí)的測(cè)量值。
11.電機(jī)與筒體對(duì)立,筒體與電機(jī)對(duì)立為什么筒體的控制效果并非總是和期望的一樣,特別是在測(cè)量區(qū)內(nèi)?如果對(duì)筒體加熱,筒壁處的材料層粘度變小,電機(jī)在這個(gè)更加光滑的筒體內(nèi)運(yùn)行需要的能量更少。電機(jī)電流(安培數(shù))下降。相反地,如果筒體冷卻,筒壁處的熔體粘度增大,電機(jī)必須更加用力地轉(zhuǎn)動(dòng),安培數(shù)增加,通過筒體時(shí)除去的一些熱量又被電機(jī)送回。通常,筒體調(diào)節(jié)器的確對(duì)熔體產(chǎn)生效果,這是我們所期望的,但是任何地方的效果都沒有區(qū)域變量大。最好是測(cè)量熔體溫度來真正了解發(fā)生了什么情況。 第11條原則不適用于模頭和模具,因?yàn)槟抢餂]有螺桿轉(zhuǎn)動(dòng)。這就是為什么外部溫度變化在那里更加有效?墒牵@些變化是從里到外因而不均勻,除非在一個(gè)固定攪拌器中攪勻,這對(duì)于熔體溫度變化以及攪拌都是一個(gè)有效的工具。
|